3D Visualization of Truecolor Image Histograms

Paula J. REITAN

Department of Computer Science & Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle

Baltimore, Maryland 21250

UNITED STATES

reitan@scs.usna.navy.mil

http://www.scs.usna.navy.mil/~reitan

Truecolor Images

A truecolor image

$$f: \mathbb{Z}_W \times \mathbb{Z}_H \to C$$

where f(x, y) is the RGB color of the pixel at column x, row y of image f and

$$C = \{ c_1, c_2, ..., c_N \} \subseteq RGB.$$

■ RGB = { $(r, g, b) | r, g, b \in \mathbb{Z}_{256}$ }.

24. Solids, W = 512, H = 512, N = 22,895

Color Image Quantization

■ *The irreversible* transformation of a truecolor image into a *color-mapped* image consisting of *K* carefully selected representative colors.

Truecolor image N = 22,895

Color-mapped image K = 256

Truecolor Image Histograms

- The first step of many color quantization techniques is to create a histogram of the colors in the truecolor image.
- The *histogram*

H(f): RGB $\rightarrow \mathbb{N}$,

where $H_f(c)$ is the number of pixels in the truecolor image f with color c.

10. Windsails, W = 768, H = 512, N = 34,111

Bit-cutting

- By cutting the (8-p) least significant bits from each r, g, b component, the RGB color space is uniformly quantized to a smaller color space denoted as RGB $_p$.
- The number of unique RGB_p colors in a truecolor image will be denoted as N_p .

3. Mandrill

27. Crambin

18. Castle

20. Sunset2

23. Beachball

 $N_8 = 11,149$

 $N_8 = 71,687$

Paula J. Reitan

Histogram Performace Analysis

- We are in search of a **space efficient** 3D histogram data structure that also supports fast insertion of pixels, query for H_f , and rendering.
- The following performance measures are of interest:
 - Space utilityation
 - Insertion Time (T_1/t_1)
 - **Query Time** (T_O/t_O)
 - **Build Time** (T_R/t_R)
 - **Render Time** (T_R/t_R)
 - **Height** (h)

3D Arrays

- A 3D array of $2^{px}2^{px}2^p$ natural numbers used to store H_f .
- *Advantages:* $T_I = \Theta(1)$ and $T_Q = \Theta(W \cdot H)$.
- *Disadvantages:* low space utilization and high render times.

		RGB_8		RGB_5			
	λ	t_B	t_Q	λ	t_B	t_Q	
Max	0.0129	9.120	4.540	0.2576	4.700	4.360	
Min	0.0001	4.730	0.740	0.0150	0.780	0.720	
Avg	0.0030	8.132	3.748	0.0809	3.925	3.643	

3D Arrays

Excellent choice for $RGB_p \leq_5$.

We need a dynamic data structure whose space utilization and render time scales better with respect to p.

$$p = 8$$
, $t_R = 18.58$, $\lambda = 0.00051$

$$p = 4$$
, $t_R = 0.14$,
 $\lambda = 0.2612$
scaled by *count*

$$p = 4$$
, $t_R = 0.07$,
scaled by $log(count)$

- The nodes of BST histograms are ordered pairs, $(c \in RGB_p, count \in \mathbb{N}),$ where $count = H_f(c).$
- We convert $c \in RGB_p$ into a unique unsigned integer: key(c) = (c.b << 16) | (c.g << 8) | c.r.
- Will be used as bucket structures for the spatial subdivisions techniques discussed later.

BST

$$p = 4,$$

 $N_4 = 1,070$
 $h = 31,$
 $t_R = 0.22$

Red-black

$$p = 4,$$

 $h = 12,$
 $t_R = 0.35$

AVL

$$p = 3,$$

 $N_3 = 198$
 $h = 8,$
 $t_R = 0.04$

AVL

$$p = 3,$$

$$t_R = 0.08$$

scaled by count

scaled by log(count)

Let T be a BST histogram of a truecolor image. Let d_T be the depth of a node in the BST. We define the structural query time of T:

$$T_Q = \sum_{n \in T} (d_T(n) + 1) \cdot c_T \cdot n.count,$$

where $c_T = 2$ is the number of comparisons made at each node.

Treaps

Simultaneously maintain the BST property on

key(node.c)

and the max heap property on node.count

scaled by count

scaled by log(count)

		RGB_8			RGB_5			
		h	t_B	t_Q	h	t_B	t_Q	
	Max	703	55.13	108.44	184	29.59	55.56	
BST	Min	38	5.12	9.55	3 6	2.19	3.33	
	Avg	131	30.61	54.72	54	17.68	29.97	
	Max	21	22.16	29.31	16	16.04	22.60	
Red-	Min	11	2.45	3.31	10	1.94	2.70	
black	Avg	18	15.77	22.23	13	11.29	16.42	
	Max	21	34.38	29.249	15	22.75	22.14	
AVL	Min	11	3.75	3.76	10	2.81	2.52	
	Avg	17	23.96	22.10	12	16.79	16.58	
	Max	703	31.87	54.19	66	17.72	27.30	
Treap	Min	29	2.10	2.64	18	1.75	2.08	
	Avg	93	21.21	31.56	39	12.13	16.49	

Paula J. Reitan Slide 15

Spatial Subdivision Methods

- Decomposition of RGB_p into smaller pieces called *partitions* or *cells*.
- Space utilization $\lambda = O/M$, where M is the number of cells and O is the number of non-empty cells.

2D Array

$$p = 6,$$

 $N_4 = 26,233$
 $M = 4,096,$
 $\lambda = 0.51,$
 $t_R = 3.77$

2D Array

$$p=6$$
,

 $t_R = 1.28$

scaled by log(count)

2D Arrays

			RGB ₈		RGB_5		
		λ	t_B	t_Q	λ	t_B	t_Q
	Max	0.433	11.060	10.120	1.000	9.940	9.920
List	Min	0.009	1.500	1.170	0.128	1.180	1.140
	Avg	0.228	7.849	7.200	0.448	7.097	7.046
_	Max	0.433	10.650	9.430	1.000	8.580	9.620
Red-	Min	0.009	1.420	1.150	0.128	1.160	1.170
Black	Avg	0.228	7.751	7.076	0.448	6.471	7.031
	Max	0.433	12.750	9.220	1.000	10.130	8.610
Treap	Min	0.009	1.660	1.160	0.128	1.450	1.180
	Avg	0.228	9.280	6.925	0.448	7.934	6.553

Octrees

■ Hierarchical subdivision method.

■ When the number of elements in a bucket exceeds the maximum bucket size (*B*), the cell (*octant*) is subdivided into eight pieces using three cut-planes which are orthogonal to each of the R, G, B axes.

Paula J. Reitan

$$p = 8,$$

 $B = 256,$
 $N_8 = 86,008$
 $\lambda = 0.797,$
 $t_R = 7.82$

p = 5, B = 64, $N_{-} = 5.873$

 $N_5 = 5.873$ $\lambda = 0.721$,

 $t_R = 0.93$

Octrees

p = 5, B = 64, $N_5 = 637,$ $\lambda = 0.56,$ $t_R = 0.15$

center

Octrees

		RGB_8			RGB_5		
		λ	t_B	t_Q	λ	t_B	t_Q
List	Max	0.833	46.40	25.15	0.812	41.04	25.68
	Min	0.416	4.570	2.310	0.421	3.820	2.080
	Avg	0.685	35.36	18.37	0.669	26.24	16.14
Red- black	Max	0.833	29.29	16.45	0.832	18.01	14.71
	Min	0.416	2.800	1.930	0.488	1.990	1.800
	Avg	0.685	20.84	12.84	0.691	13.28	11.32
	Max	0.833	31.20	16.10	0.832	18.39	13.77
Treap	Min	0.416	2.810	1.900	0.488	2.000	1.700
	Avg	0.685	21.74	12.15	0.691	13.33	9.993

k-d Trees

Hierarchical subdivision method.

■ When the number of elements in a bucket exceeds the maximum bucket size (*B*), the cell subdivided into two pieces using a single cut-plane which is orthogonal to one of the R, G, B axes.

Largest range, center

k-d tree

$$p = 8,$$

 $B = 256,$
 $N_8 = 86,008$
 $M = 544,$
 $t_R = 6.83$

Octree

center

k-d Trees

Largest range, center

k-d tree

$$p = 8,$$

 $B = 256,$
 $N_8 = 4,969$
 $M =$

 $t_R =$

Octree

$$p = 8,$$

 $B = 256,$
 $\lambda = 0.50,$
 $t_R = 0.47$

center

k-d Trees

		RGB_8			RGB_5			
		M	t_B	t_Q	M	t_B	t_Q	
	Max	1366	38.01	20.89	50	18.88	16.73	
Red- black	Min	6	3.450	2.450	3	2.510	2.100	
Olack	Avg	334	22.39	15.44	17	13.95	13.09	
Treap	Max	1366	45.85	24.27	50	21.44	17.03	
	Min	6	3.310	2.300	3	2.330	2.070	
	Avg	334	25.65	16.47	17	14.38	12.17	

B=256, Largest range, center

Paula J. Reitan

The Problem withTreaps

$$N_3 = 198$$
; $\sigma = 5,009$

$$N_5 = 5,873$$
; $\sigma = 386$

$$N_4 = 1,070; \sigma = 1,368$$

$$N_8 = 86,008$$
; $\sigma = 67$

Summary

- Visual exploration of the space and time requirements of truecolor image histograms.
- Visualized the clustering property of spatial subdivisions.
- Red-black trees and treaps are competitive bucket structures, but red-black trees are best overall when $p \ge 7$ is desired.

2D Array

Octree

